Austin the Destination, Integrating Computational Thinking Into K-12, Sharing Supercomputing Resources and Education

Austin, Texas

Theme: Teaching in Exponential Times! K-12 to Teragrid  and the Future of Supercomputing!XSEDE

In case you are advanced .. go to https://www.xsede.org/education-outreach-blog

We Raise the Bar for K-12 and Preservice Candidates

Years ago, members of the Supercomputing Conference and the Teragrid allowed us as teachers  to create a window of interest into SC and computational thinking for the SITE members. We had involvement from Henry Neeman and Diane Baxter over the years and support to become a part of the SITE community and to do workshops over several years. We have had incredible support and exposure to the educational activities including the work of Shodor.org  and the resources at that site and their workshops.We learned from the Broadening Engagement community how to share the message.

We learned at the SC Education conference and then disseminated lessons and practices. Ray Rose, ManoTalaiver, Vic Sutton, and I have been quietly integrating the computational sciences and HPC into K-12 practices. Mano works in rural areas to bring the dreams of education into reality with NSF funding. Ray is now a college instructor in technology at an HBCU in Austin. Vic and I are working with a K-12 School, Tracy Learning Center to infuse computational thinking into the curriculum. Bob Plants is the researcher in our group and he has a STEM initiative in Mississippi. He shares resources on line as outreach to teachers too.

Dr. Paul Resta is about Broadening Engagement

Change takes a Visionary!

One of my best friends is Dr. Paul Resta who put ideas of education into reality. We were so proud of his accomplishments and his center that we planned a tour for participants at SITE, Austin. The resources are a great way to create change in the learning landscape. Dr. Resta is a leader in teacher education nationally and internationally. He has worked with tribal groups in the Four Corners Project and works Internationally in education as well.

Middle School

East Austin Academy College Prep
 – This middle school is designed to help low-income minority inner city students prepare for college and success in the future. All students participate in an innovate program known as Globaloria. Globaloria is a social network for learning, in which they learn to create educational web-games for social change. East Austin College Prep Academy is the first charter school to integrate the Globaloria network and curriculum as a school-wide teaching and learning opportunity, and offers required daily curriculum to all students starting at 6th grade.

Project on Games and Workforce Readiness. Globaloria.org

Idit Harel Caperton works in areas of need with her Globaloria project. Ray, Vic and I also encouraged her to share her project, Globaloria.org with the SITE membership. We , Ray, Vic and I also were involved with the group in training and research as learners in professional development.

We have come of age. Look at the tours and the participants of SITE who were involved in thinking , learning, planning, and being involved in a special resource for educators at UT. The university of Texas.

Highlights

Manor New Tech High School (NTHS) This high school is a technology-rich learning environment using a constructivist approach to learning. It has become a model NTHS site and educators from newly established NTHSs come to Manor for orientation and training. Participants will meet with the district superintendent and the director, faculty and students at the school. (Limit 30) Depart 9:30 AM, Return 1:30 PM

View the Student-Generated Video for a Preview of this tour!

Education Visualization Lab and Visualization Center, The University of Texas at Austin – The Learning Technology Center Educational Visualization Lab is focused on the use of visualization technologies to understand patterns and relationships in massive education data sets. The visit will include a tour of the Learning Technology Center and

also a visit to the TACC Visualization Center that includes, Stallion, the highest resolution tiled display in the world; Longhorn, the largest hardware accelerated, remote, interactive visualization cluster. Was used by NOAA in predicting path for Katrina. » Newsletter

The Learning Technology Center in the College of Education at The University of Texas at Austin supports the instructional and research activities of the College’s students and faculty by providing computer facilities, telecommunications services, and digital media production equipment. The LTC also participates in projects that advance the use of technology to meet the educational needs of learners throughout the state and nation, and around the world.

You can check equipment out to use.

You can take your laptop to be checked.

You can work in the lab.

You can sit with professionals who can help you plan your lessons to be technology integrative.

Teachers can plan to be in workshops to enhance their knowledge .

I have many photos , and I am sure that I am only sharing a bit of what is possible.

Learning at the University of Texas

There are links and resources that have been created for teachers in this center for national, regional and local learning on the website

The information here comes from the newsletter and information gathered during the tour.

Kelly Gaither, Director of Visualization for the Texas Advanced Computing Center, describes the information conveyed in a simple mapped visualization.

Kelly Gaither, Director of Visualization for TACC, led the workshop, which included an overview of information visualization and visual analytics concepts and how they apply to educational data. Attendees learned the basics of Processing, a popular visualization programming language, to develop information visualizations with their own data. They were later able to view their work on the EdVisLab’s large display.

A participant learns Processing, a visualization programming language.

Both Google Apps for Education and visualization techniques for educational research represent new directions for the College of Education and its use of technology in education. The LTC is constantly exploring new technologies and their benefit to education, and has led the way in bringing these new technologies to the College. The apps will be part of the online tools that are replacing TeachNet and will allow student groups to have increased online collaboration, including co-creation of documents, presentations, and Web sites. The EdVisLab will allow faculty to better analyze large and complex data sets, more easily seeing and understanding patterns, trends, and relationships. For more information about the Google Apps for Education pilot, contact Karen French. Contact Ken Tothero to learn more about the EdVisLab. ( If you live in Tcxas)

.

The LTC equips teaching professionals with new knowledge.

 COE Education Visualization Lab

LTC Director Paul E. Resta speaks to those gathered for the EdVisLab grand opening.

The College of Education (COE) community, staff of the Texas Advanced Computing Center (TACC), and many others interested in visualization on campus gathered Friday, in early February 3 to celebrate the Learning Technology Center’s grand opening of the COE Education Visualization Laboratory (EdVisLab). The event culminated more than a year of planning the lab and designing its equipment and software systems.

Brandt Westing, TACC Research Engineer, shows visitors how visualization can help researchers detect trends and patterns in large amounts of data.

The lab is a joint project with TACC, which provided technical assistance and will help run the lab. The new facility will allow COE researchers to use visualization techniques to better analyze large data sets. The lab features a 15-monitor high resolution tiled display, a 3-D visualization system and a workstation with specialized visualization software.

COE Dean Manuel Justiz spoke first during the opening, praising LTC Director Paul Resta for all his efforts over the years to make the LTC a top-notch, nationally recognized learning technology facility. Dr. Resta then spoke, thanking the Dean for the lab’s funding and thanking all the LTC and TACC staff for the long hours spent creating the lab. Finally, Jay Boisseau, TACC Director, described how the process of adapting TACC visualization programming for use in the EdVisLab led to the development of an improved version of the software.


Texas Advanced Computing Center – Texas Advanced Computing Center is a leading resource provider in the NSF TeraGrid and operates two of the most powerful high performance computing systems in the world, which are used by thousands of scientists and engineers each year to perform research in nearly every branch of knowledge. TACC’s largest supercomputer, Ranger, can perform 579.4 trillion operations per second (or teraflops), and is nearly 30,000 faster than today’s desktop computers. TACC’s newest system, Lonestar 4, which went online in Feb. 2011, clocks in at more than 302 teraflops and offers nearly 200 million computing hours per year to researchers around the world.

The Society for Information Technology & Teacher Education is an international association of individual teacher educators, and affiliated organizations of teacher educators in all disciplines, who are interested in the creation and dissemination of knowledge about the use of information technology in teacher education and faculty/staff development.

The Society seeks to promote research, scholarship, collaboration, exchange, and support among its membership, and to actively foster the development of new national organizations where a need emerges. SITE is the only organization that has as its sole focus the integration of instructional technologies into teacher education programs.

As the official blog of SITE, this website exists to promote dialog and interaction among SITE members as well as non-members about a variety of issues relating to our mission.

Bonnie Bracey Sutton

Advertisements

The Digital Divide” Broadening Engagement” Should Include Computer Science Education

In your learning community, it is a part of the curriculum?

What do you know about computer science education? I have been involved in trying to bring it to K-12 for many years. I believe that the attention to this cause has mushroomed but not to the point where we as parents, as educators, as a community understand the importance of this subject.

I have been lucky enough to be involved in education for computer science at the supercomputing conference. Here is what I wrote in the Educational Technology Journal.

http://etcjournal.com/2011/11/28/supercomputing-the-singularity-and-21st-century-teachers/

What is computer science education?

Overhauling Computer Science Education

It depends on who is discussing it. I think that this is a great way to share ways to think about making transformational change in education.

December 15th, 2011

Hello there Facebook friend! If you like this article, please help spread the word bysharing this post with your friends. Sylvia asks and so here it is. But wait. There is more.

We know that the children using devices will learn and think in different ways.

“Students from elementary school through college are learning on laptops and have access to smartphone apps for virtually everything imaginable, but they are not learning the basic computer-related technology that makes all those gadgets work. Some organizations are partnering with universities to change that.”

THE Journal has run an important article about the efforts to overhaul Computer Science education in the U.S. (Overhauling Computer Science Education – Nov/Dec 2011.)

It’s long been a mystery to me that computer science isn’t being taught in U.S. schools. No, not computer literacy, which is also important, but often stops at the “how to use application x, y, or z” level. Why are we not teaching students how to program, master, and manage the most powerful aspects of the most important invention of the 20th and 21st century?

I believe there are two reasons, both based in fear.

1. Fear that adding a new “science” will take time away from “real” math and science. In my opinion, the US K-12 math and science curriculum has been frozen in time. It’s not relevant or real anymore, and needs a vast overhaul. But there are lots of forces at work to keep the status quo definitions of what kids are taught. And I do mean to draw a distinction between what students are taught and what they learn. For too many young people, what they learn is that math is boring, difficult, and not relevant, and science is about memorizing arcane terms. This is just a shame and waste.

2. Fear that computer science is too hard to teach in K-12. People worry that teachers are already stressed and stretched, that there aren’t enough computer science teachers, and that computer science is just something best left to colleges. That’s just a cop out. There are lots of teachers who learn to teach all kinds of difficult subjects – no one is born ready to teach chemistry or how to play the oboe, but people learn to do it all the time. Plus, there are computer languages and development tools for all ages, and lots of support on the web for people to try them out.

Please read this article – it covers a wide range of options and ideas for adding this very important subject to the lives of young people who deserve a relevant, modern education! Overhauling Computer Science Education

Sylvia

I would like to add my  2 cents worth.. We as teachers need, and some of us have had excellent support but we have often had to go to the professional development on our own. Since we as teachers do not make the decisions about curriculum, I believe that school boards, and community need to learn why we must broaden engagement.

SHODOR.org and their programs.

There are excellent resources available . Dr Robert Panoff has dedicated more than a decade in sharing resources. Shodor is a national resource for computational science education.

Our mission: to improve math and science education through the effective use of modeling and simulation technologies — “computational science.”

Shodor, a national resource for computational science education, is located in Durham, N.C., and serves students and educators nationwide. Our online education tools such as Interactivate and the Computational Science Education Reference Desk (CSERD), a Pathway Portal of the National Science Digital Library (NSDL), help transform learning through computational thinking.

In addition to developing and deploying interactive models, simulations, and educational tools, Shodor serves students and educators directly through workshops and other hands-on experiences. Shodor offers innovative workshops helping faculty and teachers incorporate computational science into their own curricula or programs. This work is done primarily through the National Computational Science Institute (NCSI) in partnership with , NCSA, and other NSF-funded initiatives.

A mentor works with students in the Shodor Scholars Program

For students from middle school through undergraduate levels of education, Shodor offers workshops, apprenticeships, internships and off-site programs that explore new approaches to math and science education through computational science.

Time and time again, Shodor has been recognized as a national leader and a premier resource in the effective use of computers to improve both math and science education.

TeraGrid ’11: Extreme Digital Discovery , and a Teacher’s Experience, Before the Dawn of XSEDE

Teachers Touring TACC

Ray Rose , Henry Neeman, Vic Sutton, and Bonnie Sutton sharing the ideas of Teragrid with help from TACC

TACC TourTeachers Exploring TACC


TeraGrid ’11: Extreme Digital Discovery

A Salt Lake City Experience

July 18-21, 2011

I was lucky to get funding to attend the Teragrid Conference in Salt Lake City. My foundation funded me to attend the last conference before it’s change to the new outreach. I have attended many of the Teragrid Conferences, networking with, learning with and being challenged to understand the use of new technologies. These were experiences in which real researchers, collaborators and EOT people created a conference. I usually attended the EOT Track. The rewards have been outstanding to the children , teachers and groups that I am able to share with.

My favorite set of presenters were Jeff Sale, and Diane Baxter.  Jeff is encyclopedic in his knowledge of visualization and other topics , and Diane’s presentations always allowed me to understand, share and teach with people outside of the Teragrid community. She shared liberally her ideas and was always up to thinking about new ideas. At various conferences I was able to do outreach and share the ideas of the gateways.  I also attended two workshops at the cneter in San Diego, In one of the workshops I learned GIS , GPS and was able to attend the ESRI conference. I am teaching those skills in a project in Washington DC to students who may not have access to those learning opportunities in the schools. They come on Saturdays to the JEF Center . ( the center is run by Dr.  Jesse Bemley , another Teragrid participant) It is a minority outreach initiative.

Teragrid Support for Bridging to K-12

One of the ideas we had was to bridge teaching andf learning conferences with the Teragrid. We first did this in Washington , DC prior to the ISTE Conference.  Just the networking that happened at that conference spread ideas, created friendships and enriched the K-12  learning community.  Here were the leaders of Teragrid sitting with us, and sharing their EOT ideas. It was powerful. We learned about various opportunities, internships and curriculum ideas for classrooms. One outstanding resources is Shodor.org Their mission: to improve math and science education through the effective use of modeling and simulation technologies — “computational science.”

Shodor, a national resource for computational science education, is located in Durham, N.C., and serves students and educators nationwide. Their online education tools such as Interactivate and theComputational Science Education Reference Desk (CSERD), a Pathway Portal of the National Science Digital Library (NSDL), help transform learning through computational thinking.In addition to developing and deploying interactive models, simulations, and educational tools, Shodor serves students and educators directly through workshops and other hands-on experiences. But the best part of Shodor I think, is learning feom Dr. Bob Panoff. He is a talented teacher who introduced us to many materials we could use in the classroom.

When you talk about STEM and resources for the learning communities it would be important to understand the connections, the gateways , and the specialized lessons that are a legacy of the initiative.

The Teacher Tech Program at San Diego is a wonderful one. I participated in the Teacher Tech program at Rice University. Here is the web page they let me learn to make. ( http://teachertech.rice.edu/Participants/bbracey/)

All of the links of that web page are not working, but the ideas of sharing and learning and continuing to progress with other teachers continues you can also see how widely I was able to share the ideas that I learned.  Rice is in Houston, Texas and so we had visits from an astronaut and visits to the space center. There was minority outreach too. It was one of the first workshops that I attended that was very diverse in membership. Dr. Richard Tapia was one of our mentors.

TACC -TCEA- Teachers  Uniting and Sharing Powerful Ideas

. This year a group of us went to the TCEA conference in Austin , Texas to share the ideas of Supercomputing. We took teachers from the conference to a Teragrid Site which is TACC. The Supercomputer at TACC is called LoneStar. A team , including Ray Rose, Henry Neeman, Vic Sutton and I planned to share the ideas of Teragrid with teachers who may not have known much about the Teragrid.  We were nervous as we planned, suppose we got no takers. But we had Henry Neeman’s workshop just in case, and then there was a tour that we did for the teachers with a program planned by the TACC facilty just for them. You will see pictures of the tour attached here.
Faith Singer-Villalobos was the person who helped us create the workshop for the teachers.
It was a great experience for the teachers. We decided to try to expand our outreach. After the exprience with the teachers we created a paper sharing the ideas of Supercomputing.
 Here is our white  paper!!  We claim the TACC opportunity  as a success!!

http://etcjournal.com/2011/04/01/white-paper-21st-century-education-computational-thinking-computational-science-and-high-performance-computing-in-k-12-education/

Scientific Computing Curriculum Outreach for the Future Workforce

To educate the next generation of researchers and computational professional, TACC created a unique curriculum for The University of Texas at Austin which allows students to study supercomputing and earn a Certificate of Scientific Computation. TACC scientists teach five undergraduate and graduate level courses at The University of Texas at Austin, in the Division of Statistics and Scientific Computation. Four of TACC’s advanced computing courses are part of the requirements for the certification, which is the equivalent of a minor. Even better, TACC is going to share resources that will be in the education department ‘s digital center, with the help of Dr. Paul Resta at the University of Texas at Austin. We are planning a workshop involvement for teacher educators from the SITE.org AACE group. That conference will be in Austin next year in the Spring, March 7-9.  We will be able to create a new interface and we are excited about it.
We are the Society for Information Technology & Teacher Education, and it their our mission to promote research, scholarship, collaboration, exchange and support.

Who is Dr. Resta? I met him in the CIlt.org initiative which was another EOT program from the NSF. Powerful silos are broken and teachers , researchers ,professors and industry worked together on powerful ideas.

What was CILT.org?

The Center for Innovative Learning Technologies (CILT) was founded in October 1997 with a grant from the National Science Foundation (NSF) to stimulate the development and study of important, technology-enabled solutions to critical problems in K-14 science, mathematics, engineering, and technology (SMET) learning. CILT has engaged the collaborative efforts of a wide range of people, institutions, and organizations including cognitive scientists, computer scientists, natural scientists, engineers, classroom teachers, educational researchers, learning technology industry leaders, and policy analysts. CILT was designed as an inclusive national effort led by five institutions—SRI International, Stanford University, University of California at Berkeley, Vanderbilt University, and the Concord Consortium. Senior researchers at these five institutions shared in the leadership of CILT. This distributed structure brought together substantial experience in foundational research on learning, technology innovation, and school improvement.

  • Four “theme teams” focused the efforts in areas of highest promise. These areas are Visualization and Modeling, Ubiquitous Computing, Assessments for Learning, and Community Tools. CILT also conducts synergy projects that synthesize important ideas and tools from all themes to create more robust educational programs for use in schools.

Education, Opportunities and Training Teragid to the General Public

General Public

One of the ways that EOT worked  to share with the public was to

generate interest in Science and Technology using Stereoscopic 3D Videos, I PADS with visualization models and other outreach materials

Targetting students in grades 5-12 as well as the general public, each video is approximately five minutes in length and has elements of computer-generated imagery and live-action. The first two have already been shown to thousands of viewers at numerous locations and events throughout the US. A third video is currently under production and scheduled to be released late 2011.

Here are a series of activities for general outreach to the public from the Teragrid AAS Family Days

https://www.facebook.com/media/set/?set=a.10150145530156327.334346.593996326&l=bc9b0c4957

Teachers used  the research of this group to learn with and participate in specialized workshops and initiatives.

Teacher Resources

Here are PDF’s of special projects from the Teragrid for teachers.

Download a PDF of the TeraGrid 2010 Science Highlights brochure

THE FUTURE?

The  same sort of work—only in more detail, generating more new knowledge and improving our world in an even broader range of fields—will continue with XSEDE.

XSEDE leader John Towns gives an overview of the new project and how it will build on TeraGrid in this short video.

NCSA’s John Towns talks about the NSF-funded XSEDE project

www.ncsa.illinois.edu


Transforming Teacher Use of Technology with Use of Teragrid Outreach Resources

 
Sharing the Vision of THe Teragrid

Family Science Days AAAS Teragrid Outreach

Three Dimension/Film of the Teragrid Outreach in the AAAS Science booth

You may ask, what is the Teragrid?

Teachers find it an empowering resource…

A formal definition is this:

TeraGrid is an open scientific discovery infrastructure combining leadership class resources at 11 partner sites to create an integrated, persistent computational resource.

Using high-performance network connections, TeraGrid integrates high-performance computers, data resources and tools, and high-end experimental facilities around the country. Currently, TeraGrid resources include more than 2.5 petaflops of computing capability and more than 50 petabytes of online and archival data storage, with rapid access and retrieval over high-performance networks. Researchers can also access more than 100 discipline-specific databases. With this combination of resources, the TeraGrid is the world’s largest, most comprehensive distributed cyberinfrastructure for open scientific research.

TeraGrid is coordinated through the Grid Infrastructure Group (GIG) at the University of Chicago, working in partnership with the Resource Provider sites: Indiana University, the Louisiana Optical Network Initiative, National Center for Supercomputing Applications, the National Institute for Computational Sciences, Oak Ridge National Laboratory, Pittsburgh Supercomputing Center, Purdue University, San Diego Supercomputer Center, Texas Advanced Computing Center, and University of Chicago/Argonne National Laboratory, and the National Center for Atmospheric Research.

The research community supports teachers, and education through outreach in several ways.  Each of the research communities has a specific education section . Gateway if you will to the use of the research .

San Diego Supercomputing Center features the subject of Computational Thinking using a well thought out project that was written by Pat Phillips of Microsoft. You can find that here:  http://education.sdsc.edu/resources/CompThinking.pdf

You may have noticed that the major teacher organizations, CSTA, ISTE, CoSN, and SITE featured papers, workshops and discussions on the use of computational thinking in the classroom. This was a planned outreach started by the network of educators and researchers within the Teragrid network.

Here is one of the papers presented at the Consortium for School Networking in New Orleans in 2011:

http://etcjournal.com/2011/04/01/white-paper-21st-century-education-computational-thinking-computational-science-and-high-performance-computing-in-k-12-education/

Executive Summary

The 2010 National Educational Technology Plan says “…technology is at the core of virtually every aspect of our daily lives and work…. Whether the domain is English language arts, mathematics, sciences, social studies, history, art, or music, 21st-century competencies and such expertise as critical thinking, complex problem solving, collaboration, and multimedia communication should be woven into all content areas.”

Since the late 1990s, the US has been trying to describe what a 21st century education should look like. Futurists are trying to divine the skills that will be needed for jobs that do not yet exist, employing technologies that have not yet been invented. However, a careful look around can allow us to see many areas that have been virtually unnoticed by those who are focused on 21st century skills.

Supercomputing – sometimes called high performance computing – is not a new technology concept, but the supercomputers of 25 years ago were about as powerful as a cell phone is today, and likewise the supercomputers of today will be no better than a laptop of 10 to 15 years from now. As the world of the biggest and fastest computers has evolved and these computers have become increasingly available to industry, government, and academia, they are being used in ways that influence everyday life, from the cars we drive, to the food in our cupboards, to the movies we enjoy.

Supercomputing is not an end in itself, but rather the technological foundation for large scale computational and data-enabled science and engineering, or computational science, for short. It is a collection of techniques for using computing to examine phenomena that are too big, too small, too fast, too slow, too expensive, or too dangerous to experiment on in the real world. While problems with small computing footprints can be examined on a laptop, the grand challenge problems most crucial for us to address have enormous computing footprints and, thus, are best solved via supercomputing.

As a result, in order to be competitive as a nation, we need to produce knowledge workers in far greater numbers who understand both what supercomputers can do and how to use them effectively to improve our understanding of the world around us and our day to day lives.

The thinking about large scale and advanced computing has evolved, too. Today, we realize that, while not everyone will be using big computing in their jobs, they will need to understand the underlying concepts.

These concepts collectively are referred to as ‘computational thinking’, a means of describing problems and how to solve them so that their solutions can be found via computing (paraphrased from Jeanette Wing, Jan Cuny, and Larry Snyder). Computational thinking includes abstraction, recursion, algorithms, induction, and scale.

Our 21st century citizens, entrepreneurs, leadership, and workforce will be best positioned to solve emerging challenges and to exploit new opportunities if they have a strong understanding of computational thinking, how it applies to computational science, and how it can be implemented via high performance computing. These are true 21st century competencies that will serve our nation well.

The authors of the paper have been immersed, involved and integrated into the Teragrid community through attending workshops, NCSI initiatives, online contact with the researchers and outreach specialists over a period of time that has proved to create a powerful network of educators sharing the story of possibilities within the Teragrid.

An initial outreach , Teacher Bridge Day , which preceded  an ISTE and CSTA conference, united teachers and educators who then continued to work together over the period of months . The teachers benefitted from the combined efforts of the many researchers and outreach specialists who participated and contributed to the very first workshop.  Following that workshop, there were involvements with ITest through Joyce Malyn Smith.

I am pleased to say that this year , Joyce and the educators at SITE.org reported a large number of people interested in the strand. Joyce took the idea and developed it into a specialized strand for the ITest Community.

Here are a few of the 2011 presentations from the Aera Annual Meeting.

There may be more resources that link to the outreach of the Teragrid. I have chosen these to share.

Joyce was also a force at the SITE conference in Nashville, TN. The informal outeach team, those of us who try to broaden engagement and show diversity were there to shake up the force within SITE.org . We established a SIG for Computational Thinking and fielded a number of workshops.

We worked also at the K-12 levels of technology in Texas at TCEA.

Everything  is Big in Texas:  TACC and Supercomputing , at  TCEA

Ranger?    Stallion ? Computational Thinking and Learning

I  go to Texas a lot. My brother lives there, friends live there,  NASA holds events. I have been to Lockhart for BBQ, to Galveston for a wedding, to San Antonio and other places. I even know lots of recipes and ways to BBQ. But Austin put the icing on the cake for those of us doing digital outreach and broadening engagement in Supercomputing.I took classes at Rice (Teacher Tech) with a Supercomputing scholarship.  I have digital sisters and brothers in Texas.

TEXAS

Why not? Texas is a huge state and I have found lots of friends and educators who support my ways of thinking there.

I participated in a Teacher Tech  workshop at Rice University in Houston, and met Karen North and Dr. Richard Tapia. For a long time I was in constant email touch with a LOT of Texans. We were not sure what kind of reception we weuld get in 2011, this being a new topic to many people. I have been to Austin a lot, so when I see the statue of Barbara Jordan and the big guitars, I feel at home. We had a Supercomputing conference in Austin a few years ago as well.

Ray Rose, Henry Neeman, Vic Sutton and I have been a team at other conferences, we were literally breaking the ice in Austin for educators. It was scary to do.

. (It was very , very cold)  The keynote was a very warm one by Leigh Anne Touhy. The Blind Side was written about her true life experience. She set the tone for broadening engagement and social justice for me. She shared how her life was changed . I had not seen the movie , but I will.

We think that in education there is a blind side to the understanding of technology, particularly computational science, so we put together a workshop for Supercomputing and the use of the Teragrid and we did  a workshop for Emerging Technologies, and a tour of the TACC center.on the campus.

TCEA  Supercomputing and the Teragrid…  no limits, remember?

Henry Neeman has a great presentation , ” What in the World is Supercomputing!“. We took it to a state conference. Did I mention he is from Okahoma? They razzed him a lot, but he just kept on presenting. The interesting thing about it is that he is a reseacher, who can bring the ideas down to earth with fun, and understanding. Henry can do this in person, on line or in a course online. You can fund a lot of the information here.

http://www.oscer.ou.edu/Symposium2003/neeman_bio.html

Nothing like being with him in person however. Think Puzzle. Think a guy moving around at the speed of light, absolutely able to help you understand Supercomputing. This is Henry.

http://www.facebook.com/photo.php?pid=5653613&l=8267b33412&id=593996326

Dr. Neeman also has taught a series of workshops titled “Supercomputing in Plain English”, directed at an audience of undergraduates, graduate students, faculty and staff not only in computer science but also in a variety of physical science and engineering fields. Dr. Neeman’s research interests include high performance computing, scientific computing, parallel and distributed computing, structured adaptive mesh refinement, scientific visualization, Grid computing and computer science education. You can find his materials on line. He is the Education and Outreach Chair for Supercomputing 2012 in Seattle.

We embarked , engaged, energized , and educated teachers so that they could be empowered to understand the computational sciences. We had outreach materials from the Teragrid. So well put together, and such a hit with the educators.

All three of the sessions were a success. We did not have supertech people except one or two and we had about 50 people in the first workshop.

TOURING TACC

The second was the tour.My heart fell when I went to the bus, because at first I could not see it was full. We had a grand tour of TACC. I love the visualization images .http://www.tacc.utexas.edu/scivis-gallery/

The University of Texas at Austin is one of the nation’s leading universities, an academic institution of enormous breadth and depth, with 50,000 students and 3,000 faculty. It’s an economic powerhouse that pumps more than $8.2 billion into the Texas economy each year. It ranks fifth in the world for academic citations and is the recipient of more than 400 patents. Seven of its doctoral programs rank among the top 10 in the nation.

The University of Texas’ intellectual firepower extends far beyond its classrooms and labs. In addition to ongoing research in 18 colleges and schools, the university sponsors 100 separate research units and 10 organized research units, such as the Texas Advanced Computing Center (TACC).

TACC plays a pivotal role in the new culture of computational science at The University of Texas at Austin and is central to UT’s success as a major public research university. TACC boasts world-class resources and expertise that enable scientists and researchers to find solutions to the biggest problems facing science and society. From climate change to medical research to energy resources, traditional and renewable, advanced computing provides the tools that are critical to discovery in science and across disciplines. Faith Singer-Villalobos lead the presentation and discussion.

TACC’s education and outreach programs support their mission to enable discoveries that advance science and society through the application of advanced computing technologies. We all benefit from advanced computing in our everyday lives, from more accurate weather reports, to safer automobile designs, to smaller, lighter electronic gadgets.

TACC’s education & outreach programs introduce K-12, undergraduate and graduate students to the power of advanced computing for science, technology, computer science, engineering, and mathematics. It believes that the students are the next generation of Einsteins, Curies, and Hawkings, who will someday make breakthrough discoveries that we can’t even imagine today.

We wanted to touch the future through sharing with the teachers what the university and supercomputing had to offer.

Teachers touch the future.

Our last presentation was to identify the real 21st Century Literaraies.  about data visualization, and computational thinking, data mining and global collaborations. We were able to share partnership organizations to teachers for field experiences, National Geographic, Earthwatch, NASA , NOAA but most importantly to show ans share curriculum opportunities that were free.

Shodor.org

http://www.shodor.org/activities/

and Scalable Game Design

http://scalablegamedesign.cs.colorado.edu/wiki/Scalable_Game_Design_wiki

http://scalablegamedesign.cs.colorado.edu/gamewiki/index.php?title=Scalable_Game_Design_wiki&oldid=3534#Game

Meanwhile San Diego is doing outreach of this kind.

Upcoming Computer Science Courses for High School and Undergraduate Students

http://education.sdsc.edu/

Introduction to C++ Programming
Mondays, January 10 – March 14, 2011– 4:30pm- 6:30pm (weekly)

This class  introduces programming concepts to students, with no previous programming experience required, and will focus on learning to read and write programs in C++. The class will focus on in-class programming and participation. The course will move quickly and students are required to have access to a computer at home. The course will cover IDEs, programming basics, compilation, execution, flow control, functions, arrays, pointers, file I/O, structures and classes. Weekly homework assignments solidify understanding in preparation for a comprehensive final project.

Introduction to Programming in Python ( this already started)
Tuesdays, January 11 – March 15, 2011– 4:30pm- 6:30pm (weekly)

This course offers an introduction to computer programming via the Python programming language. Students listen to weekly explanation-demonstrations of and gain simultaneous practical experience with basic coding concepts such as calculations, string formatting/manipulation, conditional statements, iteration, file i/o, and the abstraction of functions, as well as programming style. Weekly homework assignments solidify understanding, and a final project offers the opportunity to creatively deploy the class materials. This course is designed to prepare students for the class’s final project, the creation of a computer program that generates a poem.

In our network we can identify lots of opportunities for K-12. Teragrid even features them in a booklet.

How much data is that? Check out the visual idea of it.

http://www.focus.com/images/view/52784/