Changing the Face of Science in the US, NSF comes to the rescue..New Tools, New Technologies

Old tools for science .. still come in handy but we have new ways of learning to share. 

From maps to GPS, GS, Visualization and modeling and 3 D, Virtualization and modeling are a big step away from the textbook and just the resources within the classroom.

 

 

 

This is my antisuperman post. It is the kryptonite that should paralyze the discussion that we in the schools do not really care about science , math, technology and engineering. There was an event on the mall that shared and showcased wonderful science. But I fear that the media may not have dug deep enough to stop the bad press, to give us the good news about changing and transforming education as the groups did  on the mall and in the weeks preceding the expo event. I know that the people at the NSF really care about us..in education.

Teachers  are empowered by projects and funding from the NSF. The press hardly covers the ideas and often pokes fun at the research. People came to our booth time and time again to see the three D movie, to bring friends, to explore the use of the IPads which showed and shared the models that visualized what the various Teragrid research projects do, and to look at the photos of the supercomputers Blue Waters, in particular.

There were a few people who wanted to test our knowledge but , we had a team, and a petting zoo for the Little FE, and lots of information, even beautiful posters on the Oil Spill, posters on what is a tornado, and coloring books and crayons on supercomputing. We shared the ideas of use of the Blue Waters Supercomputer.

I don’t have a movie about myself.I am an empowered teacher, from learning to use the resources of the Teragrid. I do have a group of students, parents and supporters who have believed in science , math, engineering and technology, and project based learning.Mentors of mine are many one being Grace Hopper. Don Mitchell, Vint Cerf,  Scott Lathrop, Shirley Malcom and George Lucas. Chris Dede, and Seymour Papert. Al Gore, Ron Brown. There are more. Frank Withrow was once the leader of the Department. of Education and Larry Cuban let me, as a teacher use new technologies long ago. Once I was on a truck that carried the new ideas around the country. It was called CyberEd. This exhbit on the mall was much more powerful. Our booth was so full we had to stand outside the booth most of the time.

I am a minority and a female I am not 25.  I probably won’t be able to sleep because of the excitement of being able to be a participant on the mall in the Expo. Why is this important?Think DC Schools, think minority students who may think, we cannot do this work.. and think of  the needs of the students and their lack of participation at high levels in ordinary technology use. Think Jesse Bemley and I linking with people from the areas or not, creating networks for collaboration, community and communication in outreach.  Jesse Bemley is a black computer scientist who mentors students . We have a mission to broaden engagement . We are excited about the fact that now we can teach hands on science, explore, examine, evaluate and get immersed in the joy of learning in innovative ways.We were more excited than kids going to Disneyland about our participation.
Think Convocation on the Gathering Storm and their findings.
Here is what Elizabeth Leake wrote about the event on her blog.
“, Robert Ping (TeraGrid EOT Assistant Director/Indiana University), with a team of five from TeraGrid and NCSA, have been planning this for eight months or more. One of our biggest fears—facilitating technology and paper hand-outs in the rain—was put to rest this week with a beautiful forecast. Since this is the first such Expo, we didn’t fully know what to expect.

The Expo was conceived in response to the Obama administration’s desire to stimulate more interest in Science, Technology, Engineering, and Math (STEM) careers by “exposing children and families to new technologies that are strengthening communities, building careers, and stimulating economic growth.” The President’s Council of Advisers in Science and Technology, with help from a U.S. Department of Energy grant and funding from dozens of corporate sponsors, engaged more than 1,500 organizations to sponsor tents. They all brought some really cool S.W.A.G. The event is free—making it affordable for families to attend. Since the National Mall shares borders with the National Gallery of Art and many museums of the Smithsonian Institution, there is a lot to do within walking distance, although the Expo alone would take days to cover.


This is the same National Mall where the Reverend Martin Luther King gave his famous “I Have a Dream” speech in 1963. In times of unrest, the National Mall has been popular with protesters since it is a large, open public space located in the very heart of Washington. While this isn’t the first time masses of people gathered on the National Mall for the same reason, it was the first time so many came with a passion for science, engineering, and technology!

Imagine researchers involving K-12 and the community. It was awesome.
We as teachers, as parents as researchers need to take back the media talk about schools. We can take forth the message of the Convocation on the Gathering Storm in a positive way.
One of the pleasures of teaching in Arlington, was to meet the parents who worked for the National Science Foundation , as they responsibly helped in the schools. Tonight, I cannot sleep because my heart is full of joy. I have spent two days on the mall, in the  Teragrid Booth It was a great pleaure to meet students, parents, administrators, grandparents, the people who came to the expo to learn about science, math, engineering and technology. We explored 3 D visualizations and used Ipad Technologies, we shared visualizations that showed the work of the institutions involved in the Teragrid.  We talked about cloud computing, parallel computing and little FE. We talked with students and would be students. The group inspired a LOT of people. We could show teachers in K 12 who were working in their classrooms using Teragrid resources. We could  say computational science with joy and bring others to LOVE it.

It is not a secret that students of today live in a multimedia world where they use video as their primary form of engagement and communication. Teachers and administrators are looking for ways to present information to students that will not only spark their interest, but also encourage them to explore a subject more thoroughly. Meaningful exploration usually means deeper understanding, which translates into higher student achievement, whether measured via standardized tests or an increased graduation rate. We did all this in our booth.  We had the new technologies.
The advent of affordable 3D technology promises to bring into reality the dream of fully engaged students. Our booth was full, almost all day long.
Children and parents and their friends came back to look , to share and to use the new technologies. People were fascinated with the IPad and the visualizations.

HISTORY
I will start from Grace Hopper, go to cooking, and simple involvement in technology to the Teragrid and Blue Waters. You will see why I am so excited and feeling empowered.


Grace Hopper? Think gender…
Here is who she is. Note how early she was a star in the history of technology.  



She was a special person in technology before the term digital native was invented.
 

Grace Hopper

 

 

 

grace hopper
     

    • Category: American scientists
    • Date of birth: December 9, 1906
    • Date of death: January 1, 1992
    • Profession: Mathematician, Programmer, Scientist, …
    • Served in: United States Navy
    • Nationality: American
  •  

 

I have had some  Grace Hopper  moments, I met her when she  visited schools in Arlington. I remember looking at her thinking. She must be very , very smart, because she is old and she is still in the Navy. At first I missed the point about the Nanosecond.I kept thinking, if she is a programmer than I can do this programming thing too.
So in a high school, a career high school in Arlington County Virginia, Tom Smolenski allowed me to have an activity day that was country wide in which we matched up students with new and unusual ideas which were about teaching and learning. We learned about computers, calligraphy, and many other things. We were doing project based learning over a period of time to cement an interest in mathematics, games, cooking, many things.

You think, cooking, what has that got to do with science?Ok, I am starting with the ordinary. Our booth was not ordinary. But we need to remember that since NCLB lots of people have not even had ordinary science. There were hundreds and hundreds of people just enjoying hands on science, and being involved. We had much more than this.. but let me share an ordinary pleasure first. I have lots of pictures from the mall. But it is late and I am tired. I will post pictures tomorrow.

COOKING
That may mean that you have never seen the naked egg. or visited the pages of the Exploratorium. This is a web site that rivals the Cooking Channel because you get to learn the science of cooking and you can keep the knowledge as a plus.


Accidental Scientist: Science of Cooking
looks at the science behind food and cooking. Learn about what happens when you eat sugar, bake bread, cook an egg, or pickle foods. Find out how muscle turns to meat, what makes meat tender, and what gives meat its flavor. Take tours of breads and spices of the world. Explore your sense of taste and smell. (Exploratorium, National Science Foundation)

http://www.exploratorium.edu/cooking/index.html

Science of Eggs
Science of Pickles
Science of Candy
Science of Bread
Science of Seasoning
Science of Meat

Discover how a pinch of curiosity can improve your cooking! Explore recipes, activities, and Webcasts that will enhance your understanding of the science behind food and cooking.

Science of Cooking




WE  Were Doing Extraordinary Science, Teragrid and Blue Waters



 

The special booth that I was a part of was of course leading edge science In our booth we were Blue Waters/ Teragrid.
Here is what you would see.

 

*Showing a 3D Stereo Video about NSF, LEAD and the TeraGrid

*Promoting Bluewaters – one of the most powerful supercomputers in the world

*Demonstrating LittleFe, a complete 6 node Beowulf style portable computational cluster

*Viewing 2D visualizations and photographs from TG users on IPAD technology

*Giving away coloring books about Supercomputing (and crayons)

*Giving away large posters depicting exciting scientific visualizations

*Stamping student paperwork with NSF stamps

*Handing out TeraGrid Science and EOT Highlight Magazines

Today and yesterday on the mall were special initiatives.



Blue Waters
Taking full advantage of the opportunities that follow from fielding a petascale computing system requires a long-term coordinated effort to educate and train the next generation of scientists and engineers. This effort must excite, recruit, educate, and retain students as well as educational professionals. Partners in the Great Lakes Consortium for Petascale Computation are critical to the Blue Waters education initiatives.
Learn more about undergraduate and graduate education athttp://www.greatlakesconsortium.org/education/.


Broadband, Super-Computing, and Finding the Superman Within

This is from Frank Odasz.
Growing up, it was fun to imagine being a superman, strong and smart and able to do amazing things and help people in need. Who wouldn’t want to be a superhero, and be admired and respected and able to make a positive difference in a struggling world.  To not be helpless – in the face of all the bad things happening today.


Well, good news.

We are genuinely the first people in history to have super powers at our fingertips.  If we have broadband, we can fly into space, or to the bottom of the oceans, perform calculations and searches at speeds counted in billons per second. With a single click we can instantly self-publish our insights and resources to the nearly 2 billion online.

Without any money at all, we can start a global micromultinational business, we can start a global cause, we can launch a virtual nation, and much more.

Einstein said “We’re limited only by our imaginations.”
Many of us don’t believe we could ever be superpersons. But, there is a super secret here; to unlock your true full potential you must connect with your inner champion; the Superman within. What you won’t do for yourself, you might do for others. Many of us must first give to others in order to discover our true human potential.
Self-actualization for all – is now possible;
The 21st Century imperative is: Everyone both learner and teacher, both consumer and producer, all the time.
You have the choice to step up, even with just baby steps for starters, or to step back from your true full potential. That you actually have this choice alone, is powerful!
The love of learning is the key to learning how to innovate, to create value in a knowledge economy, and as important is knowing how to cultivate one’s curiosity; seeking out new knowledge and having fun making discovery a part of one’s lifestyle.
Was it Spiderman who says ” With Power comes Responsibility?”
If you are unemployed, under educated, depressed, and down and out, there is a lot you can do both for yourself and for those yet worse off than you. Anyone can become a citizen professor, able to teach anything to anyone, anywhere, anytime.

Now I can go to sleep. I think. I might giggle about having to enter the marathon to access the mall. I had no other way of getting to my booth.
It was funny , me in a backpack easing sideways.

Bonnie Bracey Sutton
PowerofUSFoundation
Digital Equity and Social Justice Chair, SITE.org
Advertisements

Much Ado About Education.. Circa 1995, So Why has it Not Happened?

Alex Repenning

What book are you reading?.. I have three on education that are catching my attention. Some of us have been talkking about preparing for the 21st Century for about 20 years.  Some of this has happened, but many people are on the digital dark road.

Time to put the Edge into Education


Revisiting Common Ground. an NIIAC Document 1995 -Why didn’t this happen?
by Bonnie Bracey Sutton
How much of this has happened? Take a look.
What are the impediments besides the lack of broadband.
I believe the lack of sufficient teacher professional development and the lack of school infrastructure are a part of the problem. Bad teachers? Who says?What about the lack of
understanding what was needed to meet the challenge of transformation?What about the slow understanding of how the world has changed with social media and the ways in which
the whole world has become internationalized? How has thinking changed about content?

Your thoughts , ideas ? What happened? Why did not a lot of this happen?


A Transformation of Learning:

Use of the NII for Education and Lifelong Learning

Bonnie Bracey <bbracey@aol.com>

Today, we have a dream for a different kind of superhighway that
can save lives, create jobs and give every American young and old,
the chance for the best education available to anyone, anywhere.

I challenge you. . .to connect all of our classrooms, all of our
libraries, and all of our hospitals and clinics by the year 2000.

Vice President Al Gore, speaking to communications industry
leaders, January 11, 1994

I am a classroom teacher. I am a member of the National Information
Infrastructure Advisory Council, appointed by the President and we are
involved in sharing our documents, which we wrote and the “Common Ground”
that links the ideas that will allow Americans to see the future, using
technology.

I want to share with you scenarios of technology at work from the Office of
Technology Assessment video, the overarching themes, or Common Ground of the
National Information Infrastructure Advisory Council
and the National Institute of Standards vision for the thinking which will
take us into technology.

Education and Lifelong Learning

Communications technology is transforming the way we live by
connecting us with information and each other. The National
Information Infrastructure (NII) promises every business,
government agency, hospital, home, library, and school in the
nation access anywhere to voice, data, full-motion video, and
multimedia applications. The impact of these capabilities on
learning — for the children, for higher education students, and
for lifelong learners — will be substantial.

The way Americans teach, learn, transmit and access information
remains largely unchanged from a century ago. We find the following
conditions in American education and training:

– The textbook remains the basic unit of instruction. Absorption of
its contents tends to be the measure of educational success.

– Teachers and instructors use “chalk and talk” to convey
information. Students are often recipients of instruction rather
than active participants in learning.

– School teachers work largely in isolation from their peers.
Teachers interact with their colleagues only for a few moments each
day. Most other professionals collaborate, exchange information and
develop new skills on a daily basis.

– Although half of the nation’s school teachers use passive video
materials for instruction, only a small fraction have access to
interactive video, computer networks, or even telephones in the
classroom.

– While computers are a frequent sight in America’s classrooms and
training sites, they are usually used simply as electronic
workbooks. Interactive, high performance uses of technology, such
as networked teams collaborating to solve real-world problems,
retrieving information from electronic libraries, and performing
scientific experiments in simulated environments, are all too
uncommon.

– “U.S. schooling is a conservative institution, which adopts new
practice and technology slowly. Highly regulated and financed from
a limited revenue base, schools serve many educational and social
purposes, subject to local consent. The use of computer technology,
with its demands on teacher professional development, physical
space, time in the instructional day, and budget … has found a
place in classroom practice and school organization slowly and
tentatively.”[note 1]

Events of the last two decades have proven that we can do better.
We have found that most American children are capable of learning
at dramatically higher levels — levels of performance we now
expect only of our best students. We have learned this from
research in cognitive science, from the educational achievements of
other countries, and from pioneering efforts in our own schools.
Moreover, after 35 years of research, we have found that technology
can be the key to higher levels of achievement.[note 2]

Similarly, in the American workplace we have found that workers can
achieve levels of productivity and quality equal to the best in the
world.[note 3] Well-educated, well-trained, motivated workers can
produce high-quality goods and services at low cost, enhance
industrial productivity and competitiveness, and sustain high
living standards. High-quality education and training payoff for
the individual whose skills are upgraded, for the company seeking
a competitive edge, and for the nation in achieving overall
productivity and competitiveness.

Our major foreign competitors place much greater emphasis on
developing and maintaining workforce skills than we do. Experienced
production workers at Japanese auto assembly plants, for example,
receive three times as much training each year as their American
counterparts. Research in our country has shown that workers who
receive formal job training are 30 percent more productive than
those who do not. Again, we have found that technology is the key
to making training accessible and affordable — especially for
small- to medium-sized firms with few resources of their own to
devote to producing and implementing the training and lifelong
learning their workers need and for workers who, on their own, are
attempting to improve their skills or transfer them to new areas of
endeavor.

Finally, in preparing students for the workplace, we have learned
that interactive, high performance technology can produce
immersive, real world instructional environments. These
environments can smooth longterm school-to-work transitions while
helping to meet the immediate objectives of both schools and
workplaces. Our efforts to develop this capability have been
fragmentary and shortlived at best.

A Vision for the Use of the NII

The NII, will be the vehicle for improving education and lifelong
learning throughout America in ways we now know are critically
important. Our nation will become a place where students of all
ages and abilities reach the highest standards of academic
achievement. Teachers, engineers, business managers, and all
knowledge workers will constantly be exposed to new methods, and
will collaborate and share ideas with one another.

Through the NII, students of all ages will use multimedia
electronic libraries and museums containing text, images, video,
music, simulations, and instructional software. The NII will give
teachers, students, workers, and instructors access to a great
variety of instructional resources and to each other. It will give
educators and managers new tools for improving the operations and
productivity of their institutions.

The NII will remove school walls as barriers to learning in several
ways. It will provide access to the world beyond the classroom. It
will also permit both teachers and students access to the tools of
learning and their peers — outside the classroom and outside the
typical nine to three school day. It will enable family members to
stay in contact with their children’s schools. The NII will permit
students, workers and instructors to converse with scientists,
scholars, and experts around the globe.

Workplaces will become lifelong learning environments, supporting
larger numbers of high skill, high wage jobs. Printed books made
the content of great instruction widely and inexpensively available
in the 18th Century. The interactive capabilities of the NII will
make both the content and interactions of great teaching
universally and inexpensively available in the 21st Century.

Education and Lifelong Learning Applications for the NII

The NII will provide the backbone for a lifelong learning society.
Education and training communities will better accommodate an
enormous diversity of learners in an equally diverse variety of
settings. In addition to schools and work places, interconnected,
high-performance applications will extend interactive learning to
community centers, libraries, and homes. Education, training, and
lifelong learning applications available from the NII may include:

– Multimedia interactive learning programs delivered to homes to
immigrant children and their parents to collaborate on learning
English as a second language.

– Troubleshooting and operating applications that access the
computer-assisted-design (CAD) databases used to design workplace
technology and to integrate the CAD data with instructional and
job-aiding capabilities to provide just-in-time training and
maintenance assistance.

– Comprehensive interconnectivity for students that allows them to
receive and complete assignments, collaborate with students in
distant locations on school projects, and interact with teachers
and outside experts to receive help, hints, and critiques.

– Simulated learning activities such as laboratory experiments and
archeological digs.

– Universal access interfaces for computers and telecommunications
devices for students, workers and others with disabilities to allow
access to the NII.

– Affordable, portable personal learning assistance that tap into
the NII from any location at any time and provide multimedia access
to any NII information resource.

– Immersive, realistic interactive simulations that allow emergency
teams made up of geographically dispersed members to practice
together on infrequently used procedures that may be urgently
needed to meet local exigencies.

The Educational Benefits of Technology

Evidence from research, schools, and workplaces around the country
tells us that communications technologies are powerful tools in
reaching the highest levels of educational performance.

– Students with disabilities, who previously had at best limited
access to most educational and reference materials, will have
fuller access and will have the ability to participate in the
learning experience with their peers.

– A 1993 survey of studies on the effectiveness of technology in
schools concluded that “courses for which computer-based networks
were used increased student-student and student-teacher
interaction, increased student-teacher interaction with
lower-performing students, and did not decrease the traditional
forms of communications used.”[note 4]

– Research on the costs of instruction delivered via distance
learning, videotape, teleconferencing, and computer software
indicates that savings are often achieved with no loss of
effectiveness. Distance learning vastly broadens the learning
environment, often providing teaching resources simply not
available heretofore. Technology-based methods have a positive
impact on learner motivation and frequently save instructional
time. Savings in training time produce benefits both by reducing
training costs and by shortening the time required to become and
remain productive in the workplace.

– A review of computer-based instruction used in military training
found that students reach similar levels of achievement in 30% less
time than they need using more standard approaches to
training.[note 5]

– A Congressionally mandated review covering 47 comparisons of
multimedia instruction with more conventional approaches to
instruction found time savings of 30%, improved achievement, cost
savings of 30-40%, and a direct, positive link between amount of
interactivity provided and instructional effectiveness.[note 6]

– A comparison of peer tutoring, adult tutoring, reducing class
size, increasing the length of the school day, and computer-based
instruction found computer-based instruction to be the least
expensive instructional approach for raising mathematics scores by
a given amount.[note 7]

– A landmark study of the use of technology for persons with
disabilities found that “almost three-quarters of school-age
children were able to remain in a classroom, and 45 percent were
able to reduce school-related services.”[note 8]

Of course, these benefits depend upon several contextual factors,
including the instructional methods used, the quality of the
applications, the availability of professional development for
educators, accessibility of instructional materials, the presence
of school technology support staff, and family involvement.[note 9]
We must learn through experience how best to ensure that the
benefits we intend to obtain from NII-based applications become
routinely realized in practice.

Telecommunications networks provide a range of resources to
students and educators that were never before available or
affordable. Students and workers can now gain access to mentoring,
advice, and assistance from scientists, engineers, researchers,
business leaders, technicians, and local experts around the globe
through the Internet, using a level of access and connectivity that
was previously unimaginable. High school students in West
Virginia, for example, can now study Russian via satellite and
telephone with a teacher hundreds of miles away. Few West Virginia
school districts could afford to offer such a course any other way.
Less well understood are changes in the types of learning that
occur with the use of certain technologies. Current evidence
suggests that some technology applications are more effective than
traditional instructional methods in building complex problem
solving capabilities for synthesizing information and in improving
writing quality. The effects are achieved in part by permitting
alternate methods of “reaching” and motivating learners.

The Administration’s National Information Infrastructure initiative
can trigger a transformation of education, training, and lifelong
learning by making new tools available to educators, instructors,
students, and workers and help them reach dramatically higher
levels of performance and productivity. The impact of this
transformation in teaching and learning is in-estimable, but
clearly enormous. Knowledge drives today’s global marketplace. The
NII will permit us to take learning beyond the limitations of
traditional school buildings. It will take our educators and
learners to worldwide resources. Learning will be our way of life.

PART II: Where Are We Now?

Today, compelling teaching and learning applications are the
exception, not the rule. Several federal agencies provide services
that meet specific, focused needs, while hundreds of state and
local networks and private service providers have begun to address
the technology needs of education. Current uses, while expanding
rapidly, reach only a small number of technologically-literate
school communities.

Current application of NII capabilities to work place training is
more extensive and technologically advanced than educational
applications, yet it lags well behind what is needed and available.
The story of workplace training seems to be a case of the haves
receiving more and the have-nots remaining neglected. Small firms,
those with 100 employees or less, provide about 35 percent of total
U.S. employment, but they lack the expertise to provide in-house
training, the resources to pay for outside training, and sufficient
numbers of people who need training at any one time to justify
focused training efforts. Larger firms are more likely to provide
training than smaller ones, but the training they provide is mostly
limited to college-educated technicians and managers. The lower the
level of skills possessed, the less likely the worker is to receive
training from any source. Transportable, quality controlled
training and lifelong learning could be made readily and
inexpensively accessible using the NII and will have a major impact
on improving worker skills and workplace productivity.

While much remains to be done, the opportunities offered by the NII
put many of the needed capabilities within reach of schools, homes,
and the workplace.

Current Uses of Telecommunications for Education

The existing telecommunications infrastructure is composed of
telephone, broadcast, cable, and electronic networks. It is used
for education, training, and lifelong learning in five basic ways:
1) instructing with video; 2) gathering information from remote
libraries and databases; 3) communicating using two-way
asynchronous capabilities such as e-mail and information bulletin
boards; 4) distance learning; and 5) electronic transfer of
instructional software and simulations.

– Instructional video. Seventy-five percent of America’s schools
have cable television, and half of its teachers use video material
in their courses.[note 10] The Stars Schools program is reaching
200,000 students in 48 states with advanced placement courses in
mathematics, science, and foreign language instruction using fiber
optics, computers, and satellites.[note 11] Cassette videotapes
for instruction are widely used in schools and work places, and the
development of these videotapes for both education and training has
become a vigorous industry.

– Information collection. This activity includes location and
retrieval of documents such as lesson plans and research reports,
but it also includes newer data sources such as CAD databases for
workplace technologies and equipment, and multimedia information
retrieval from digital libraries that can be accessed by students,
workers, or people in homes, libraries, and museums. Over 60,000
electronic bulletin boards are used by more than 12 million
Americans every day.[note 12] The annual rate of Gopher traffic on
the Internet, which directly represents an effort to use NII
facilities to gather information, is growing at an annual rate of
approximately 1000%[note 13] The Department of Education has a
Gopher server which points to or contains educational research
information, such as the AskERIC service and information from
sources such as CNN, Academy One, and the Educational Testing
Service. NASA Spacelink makes lesson plans on space flight and
related science topics available on the Internet.

– Two-way communication. This includes communication via electronic
mail and conferencing among teachers, students, workers, mentors,
technicians, and subject matter experts of every sort.
Approximately one-quarter of the teachers in Texas regularly sign
on to the Texas Education Network, or TENET, to share information,
exchange mail, and find resources. A professor at Virginia
Polytechnic Institute and State University teaches a writing course
entirely online. Students swap writing projects and discuss their
assignments online. In the workplace, electronic mail is used by
more than 12 million workers, increasing to over 27 million workers
by 1995. Just less than a sixth of U.S. homes now have at least one
computer connected to a modem, and this percentage is growing
rapidly. As of July, 1993, there were four Internet hosts for
every 1000 people in the United States. There are now 60 countries
on the Internet. About 137 countries can now be reached by
electronic mail.[note 15]

– Distance learning.
Hundreds of thousands of students in schools,
community colleges, and universities now take courses via one-and
two-way video and two-way audio communication. In South Carolina,
high school students across the state study with a teacher of
Russia based in Columbia through South Carolina Educational
Television. Boise State University offers a masters degree program
conducted entirely over networked computers to students all over
the country. The Department of Defense is investing well over $1
billion in the development and implementation of networked
distributed interactive simulation. This technology, which allows
dispersed learners to engage in collaborative problem solving
activities in real time, is now ready for transfer to schools and
workplaces outside of the defense sector.

– Transfer of instructional software and simulations. Instructional
programs, simulations, materials, and databases can all be accessed
over the NII and delivered to schools, homes, libraries, and
workplaces wherever and whenever it is desirable to do so.
Currently, there are massive exchanges of software, databases, and
files using the Internet, but relatively little of this activity
occurs in the service of education, training, and lifelong
learning.

Nonetheless, compelling applications that will become indispensable
to teachers, students, and workers are not yet available. All the
capabilities of computer-based instruction and multimedia
instruction can be distributed using NII facilities to schools,
workplaces, homes, libraries, museums, community centers, store
fronts — wherever and whenever people wish to learn. Yet the
infrastructure and applications to support this level of
accessibility for education, training, and lifelong learning uses
have yet to be developed. Until compelling applications are
available, educations will not realize the potential of the NII.

Efforts to Build the NII for Education and Lifelong Learning: Roles
of the Private, Nonprofit, and Public Sectors

Successful implementation of the NII to serve the nation’s
education and lifelong learning needs will require significant
contributions by the private sector, state and local governments,

Reference

D. Lewis and E. McCracken, Common Ground: Fundamental Principles for the
National Information Infrastructure, NIIAC,
March 1995.(gopher@ntiaunix1.ntia.doc.gov)

A new book by Milton Chen of the George Lucas Educational Foundation, picks up the discussion.

Where are we now?

Since information is no longer bounded by time and space, and I know you are all savvy digerati who get all your information from the Internet, you can listen to the live stream or archive at this link, where you’ll also see info on how to call in or send an email during the show:

http://www.kqed.org/radio/programs/forum/

For more info about the book and a short video of me introducing it on edutopia.org:

http://www.amazon.com/Education-Nation-Leading-Innovation-Schools/dp/0470615060
http://www.edutopia.org/educationnation

Now that we’re into a new school year, it’s time to put “the edge into education”!