Austin the Destination, Integrating Computational Thinking Into K-12, Sharing Supercomputing Resources and Education

Austin, Texas

Theme: Teaching in Exponential Times! K-12 to Teragrid  and the Future of Supercomputing!XSEDE

In case you are advanced .. go to https://www.xsede.org/education-outreach-blog

We Raise the Bar for K-12 and Preservice Candidates

Years ago, members of the Supercomputing Conference and the Teragrid allowed us as teachers  to create a window of interest into SC and computational thinking for the SITE members. We had involvement from Henry Neeman and Diane Baxter over the years and support to become a part of the SITE community and to do workshops over several years. We have had incredible support and exposure to the educational activities including the work of Shodor.org  and the resources at that site and their workshops.We learned from the Broadening Engagement community how to share the message.

We learned at the SC Education conference and then disseminated lessons and practices. Ray Rose, ManoTalaiver, Vic Sutton, and I have been quietly integrating the computational sciences and HPC into K-12 practices. Mano works in rural areas to bring the dreams of education into reality with NSF funding. Ray is now a college instructor in technology at an HBCU in Austin. Vic and I are working with a K-12 School, Tracy Learning Center to infuse computational thinking into the curriculum. Bob Plants is the researcher in our group and he has a STEM initiative in Mississippi. He shares resources on line as outreach to teachers too.

Dr. Paul Resta is about Broadening Engagement

Change takes a Visionary!

One of my best friends is Dr. Paul Resta who put ideas of education into reality. We were so proud of his accomplishments and his center that we planned a tour for participants at SITE, Austin. The resources are a great way to create change in the learning landscape. Dr. Resta is a leader in teacher education nationally and internationally. He has worked with tribal groups in the Four Corners Project and works Internationally in education as well.

Middle School

East Austin Academy College Prep
 – This middle school is designed to help low-income minority inner city students prepare for college and success in the future. All students participate in an innovate program known as Globaloria. Globaloria is a social network for learning, in which they learn to create educational web-games for social change. East Austin College Prep Academy is the first charter school to integrate the Globaloria network and curriculum as a school-wide teaching and learning opportunity, and offers required daily curriculum to all students starting at 6th grade.

Project on Games and Workforce Readiness. Globaloria.org

Idit Harel Caperton works in areas of need with her Globaloria project. Ray, Vic and I also encouraged her to share her project, Globaloria.org with the SITE membership. We , Ray, Vic and I also were involved with the group in training and research as learners in professional development.

We have come of age. Look at the tours and the participants of SITE who were involved in thinking , learning, planning, and being involved in a special resource for educators at UT. The university of Texas.

Highlights

Manor New Tech High School (NTHS) This high school is a technology-rich learning environment using a constructivist approach to learning. It has become a model NTHS site and educators from newly established NTHSs come to Manor for orientation and training. Participants will meet with the district superintendent and the director, faculty and students at the school. (Limit 30) Depart 9:30 AM, Return 1:30 PM

View the Student-Generated Video for a Preview of this tour!

Education Visualization Lab and Visualization Center, The University of Texas at Austin – The Learning Technology Center Educational Visualization Lab is focused on the use of visualization technologies to understand patterns and relationships in massive education data sets. The visit will include a tour of the Learning Technology Center and

also a visit to the TACC Visualization Center that includes, Stallion, the highest resolution tiled display in the world; Longhorn, the largest hardware accelerated, remote, interactive visualization cluster. Was used by NOAA in predicting path for Katrina. » Newsletter

The Learning Technology Center in the College of Education at The University of Texas at Austin supports the instructional and research activities of the College’s students and faculty by providing computer facilities, telecommunications services, and digital media production equipment. The LTC also participates in projects that advance the use of technology to meet the educational needs of learners throughout the state and nation, and around the world.

You can check equipment out to use.

You can take your laptop to be checked.

You can work in the lab.

You can sit with professionals who can help you plan your lessons to be technology integrative.

Teachers can plan to be in workshops to enhance their knowledge .

I have many photos , and I am sure that I am only sharing a bit of what is possible.

Learning at the University of Texas

There are links and resources that have been created for teachers in this center for national, regional and local learning on the website

The information here comes from the newsletter and information gathered during the tour.

Kelly Gaither, Director of Visualization for the Texas Advanced Computing Center, describes the information conveyed in a simple mapped visualization.

Kelly Gaither, Director of Visualization for TACC, led the workshop, which included an overview of information visualization and visual analytics concepts and how they apply to educational data. Attendees learned the basics of Processing, a popular visualization programming language, to develop information visualizations with their own data. They were later able to view their work on the EdVisLab’s large display.

A participant learns Processing, a visualization programming language.

Both Google Apps for Education and visualization techniques for educational research represent new directions for the College of Education and its use of technology in education. The LTC is constantly exploring new technologies and their benefit to education, and has led the way in bringing these new technologies to the College. The apps will be part of the online tools that are replacing TeachNet and will allow student groups to have increased online collaboration, including co-creation of documents, presentations, and Web sites. The EdVisLab will allow faculty to better analyze large and complex data sets, more easily seeing and understanding patterns, trends, and relationships. For more information about the Google Apps for Education pilot, contact Karen French. Contact Ken Tothero to learn more about the EdVisLab. ( If you live in Tcxas)

.

The LTC equips teaching professionals with new knowledge.

 COE Education Visualization Lab

LTC Director Paul E. Resta speaks to those gathered for the EdVisLab grand opening.

The College of Education (COE) community, staff of the Texas Advanced Computing Center (TACC), and many others interested in visualization on campus gathered Friday, in early February 3 to celebrate the Learning Technology Center’s grand opening of the COE Education Visualization Laboratory (EdVisLab). The event culminated more than a year of planning the lab and designing its equipment and software systems.

Brandt Westing, TACC Research Engineer, shows visitors how visualization can help researchers detect trends and patterns in large amounts of data.

The lab is a joint project with TACC, which provided technical assistance and will help run the lab. The new facility will allow COE researchers to use visualization techniques to better analyze large data sets. The lab features a 15-monitor high resolution tiled display, a 3-D visualization system and a workstation with specialized visualization software.

COE Dean Manuel Justiz spoke first during the opening, praising LTC Director Paul Resta for all his efforts over the years to make the LTC a top-notch, nationally recognized learning technology facility. Dr. Resta then spoke, thanking the Dean for the lab’s funding and thanking all the LTC and TACC staff for the long hours spent creating the lab. Finally, Jay Boisseau, TACC Director, described how the process of adapting TACC visualization programming for use in the EdVisLab led to the development of an improved version of the software.


Texas Advanced Computing Center – Texas Advanced Computing Center is a leading resource provider in the NSF TeraGrid and operates two of the most powerful high performance computing systems in the world, which are used by thousands of scientists and engineers each year to perform research in nearly every branch of knowledge. TACC’s largest supercomputer, Ranger, can perform 579.4 trillion operations per second (or teraflops), and is nearly 30,000 faster than today’s desktop computers. TACC’s newest system, Lonestar 4, which went online in Feb. 2011, clocks in at more than 302 teraflops and offers nearly 200 million computing hours per year to researchers around the world.

The Society for Information Technology & Teacher Education is an international association of individual teacher educators, and affiliated organizations of teacher educators in all disciplines, who are interested in the creation and dissemination of knowledge about the use of information technology in teacher education and faculty/staff development.

The Society seeks to promote research, scholarship, collaboration, exchange, and support among its membership, and to actively foster the development of new national organizations where a need emerges. SITE is the only organization that has as its sole focus the integration of instructional technologies into teacher education programs.

As the official blog of SITE, this website exists to promote dialog and interaction among SITE members as well as non-members about a variety of issues relating to our mission.

Bonnie Bracey Sutton

The Digital Divide” Broadening Engagement” Should Include Computer Science Education

In your learning community, it is a part of the curriculum?

What do you know about computer science education? I have been involved in trying to bring it to K-12 for many years. I believe that the attention to this cause has mushroomed but not to the point where we as parents, as educators, as a community understand the importance of this subject.

I have been lucky enough to be involved in education for computer science at the supercomputing conference. Here is what I wrote in the Educational Technology Journal.

http://etcjournal.com/2011/11/28/supercomputing-the-singularity-and-21st-century-teachers/

What is computer science education?

Overhauling Computer Science Education

It depends on who is discussing it. I think that this is a great way to share ways to think about making transformational change in education.

December 15th, 2011

Hello there Facebook friend! If you like this article, please help spread the word bysharing this post with your friends. Sylvia asks and so here it is. But wait. There is more.

We know that the children using devices will learn and think in different ways.

“Students from elementary school through college are learning on laptops and have access to smartphone apps for virtually everything imaginable, but they are not learning the basic computer-related technology that makes all those gadgets work. Some organizations are partnering with universities to change that.”

THE Journal has run an important article about the efforts to overhaul Computer Science education in the U.S. (Overhauling Computer Science Education – Nov/Dec 2011.)

It’s long been a mystery to me that computer science isn’t being taught in U.S. schools. No, not computer literacy, which is also important, but often stops at the “how to use application x, y, or z” level. Why are we not teaching students how to program, master, and manage the most powerful aspects of the most important invention of the 20th and 21st century?

I believe there are two reasons, both based in fear.

1. Fear that adding a new “science” will take time away from “real” math and science. In my opinion, the US K-12 math and science curriculum has been frozen in time. It’s not relevant or real anymore, and needs a vast overhaul. But there are lots of forces at work to keep the status quo definitions of what kids are taught. And I do mean to draw a distinction between what students are taught and what they learn. For too many young people, what they learn is that math is boring, difficult, and not relevant, and science is about memorizing arcane terms. This is just a shame and waste.

2. Fear that computer science is too hard to teach in K-12. People worry that teachers are already stressed and stretched, that there aren’t enough computer science teachers, and that computer science is just something best left to colleges. That’s just a cop out. There are lots of teachers who learn to teach all kinds of difficult subjects – no one is born ready to teach chemistry or how to play the oboe, but people learn to do it all the time. Plus, there are computer languages and development tools for all ages, and lots of support on the web for people to try them out.

Please read this article – it covers a wide range of options and ideas for adding this very important subject to the lives of young people who deserve a relevant, modern education! Overhauling Computer Science Education

Sylvia

I would like to add my  2 cents worth.. We as teachers need, and some of us have had excellent support but we have often had to go to the professional development on our own. Since we as teachers do not make the decisions about curriculum, I believe that school boards, and community need to learn why we must broaden engagement.

SHODOR.org and their programs.

There are excellent resources available . Dr Robert Panoff has dedicated more than a decade in sharing resources. Shodor is a national resource for computational science education.

Our mission: to improve math and science education through the effective use of modeling and simulation technologies — “computational science.”

Shodor, a national resource for computational science education, is located in Durham, N.C., and serves students and educators nationwide. Our online education tools such as Interactivate and the Computational Science Education Reference Desk (CSERD), a Pathway Portal of the National Science Digital Library (NSDL), help transform learning through computational thinking.

In addition to developing and deploying interactive models, simulations, and educational tools, Shodor serves students and educators directly through workshops and other hands-on experiences. Shodor offers innovative workshops helping faculty and teachers incorporate computational science into their own curricula or programs. This work is done primarily through the National Computational Science Institute (NCSI) in partnership with , NCSA, and other NSF-funded initiatives.

A mentor works with students in the Shodor Scholars Program

For students from middle school through undergraduate levels of education, Shodor offers workshops, apprenticeships, internships and off-site programs that explore new approaches to math and science education through computational science.

Time and time again, Shodor has been recognized as a national leader and a premier resource in the effective use of computers to improve both math and science education.